正導電纜技改、降耗和效益雙豐收
浙江正導電纜有限公司投入600萬元淘汰高能耗的絞對機和變壓器,以及對電磁調速注塑機進行變頻改造后, 不僅實現了年節電77萬度、產品廢品率下降30%等預期目標,而且新增銷售收入2850萬元,新增利潤216萬元,迎來了降耗和效益雙豐收。
浙江正導電纜有限公司是一家專業生產通信電纜、數據電纜和同軸電纜的高新技術企業,該企業產品廣泛應用于中國電信、聯通、鐵通、廣電等網絡建設,上世紀末起批量出口海外市場,與北美、歐洲、中東、非洲的40多個國家和地區保持著貿易往來,還是世界500強英國電信集團的亞洲通信電纜供應商。企業規模越做越大,生產過程中的高能耗也越來越突出,企業決策層越來越感到:節能增效是企業實現可持續發展的必由之路。
據"正導電纜"的一位負責人介紹:不技改,高能耗、低效益的設備使企業生產成本越來越高,而且工藝上也無法更新,將使企業失去市場競爭力。企業決定從去年開始籌建節能增效項目、進行設備改造。技改后,新型絞對機和變頻注塑機的單機能耗由原來的6.6度和23.0度降為現如今的4.7度和16.3度,再加上企業將生產車間內起保護裝置的變壓器全部由S7型改用了S9節能型變壓器,每年能為企業節約用電77萬度。
由于電纜生產是典型的料重、工輕的行業,原材料的價格幾乎占到了總成本的70%至80%左右。新引進的節能絞對機以及改造后的變頻調速注塑機采用了國內先進的生產工序,不僅原材料成品率高,而且成品速度也大大提升。據介紹,該企業現在的廢品率比設備改造前下降了30%,制造成本明顯降低,為公司帶來了不小的收益
超導材料基礎知識介紹
超導材料具有在一定的低溫條件下呈現出電阻等于零以及排斥磁力線的性質的材料,F已發現有28種元素和幾千種合金和化合物可以成為超導體。
特性 超導材料和常規導電材料的性能有很大的不同。主要有以下性能。①零電阻性:超導材料處于超導態時電阻為零,能夠無損耗地傳輸電能。如果用磁場在超導環中引發感生電流,這一電流可以毫不衰減地維持下去。這種“持續電流”已多次在實驗中觀察到。②完全抗磁性:超導材料處于超導態時,只要外加磁場不超過一定值,磁力線不能透入,超導材料內的磁場恒為零。③約瑟夫森效應:兩超導材料之間有一薄絕緣層(厚度約1nm)而形成低電阻連接時,會有電子對穿過絕緣層形成電流,而絕緣層兩側沒有電壓,即絕緣層也成了超導體。當電流超過一定值后,絕緣層兩側出現電壓U(也可加一電壓U),同時,直流電流變成高頻交流電,并向外輻射電磁波,其頻率為,其中h為普朗克常數,e為電子電荷。這些特性構成了超導材料在科學技術領域越來越引人注目的各類應用的依據。
基本臨界參量 有以下 3個基本臨界參量。①臨界溫度:外磁場為零時超導材料由正常態轉變為超導態(或相反)的溫度,以Tc表示。Tc值因材料不同而異。已測得超導材料的最低Tc是鎢,為0.012K。到1987年,臨界溫度最高值已提高到100K左右。②臨界磁場:使超導材料的超導態破壞而轉變到正常態所需的磁場強度,以Hc表示。Hc與溫度T 的關系為Hc=H0[1-(T/Tc)2],式中H0為0K時的臨界磁場。③臨界電流和臨界電流密度:通過超導材料的電流達到一定數值時也會使超導態破態而轉變為正常態,以Ic表示。Ic一般隨溫度和外磁場的增加而減少。單位截面積所承載的Ic稱為臨界電流密度,以Jc表示。
超導材料的這些參量限定了應用材料的條件,因而尋找高參量的新型超導材料成了人們研究的重要課題。以Tc為例,從1911年荷蘭物理學家H.開默林-昂內斯發現超導電性(Hg,Tc=4.2K)起,直到1986年以前,人們發現的最高的 Tc才達到23.2K(Nb3Ge,1973)。1986年瑞士物理學家K.A.米勒和聯邦德國物理學家J.G.貝德諾爾茨發現了氧化物陶瓷材料的超導電性,從而將Tc提高到35K。之后僅一年時間,新材料的Tc已提高到100K左右。這種突破為超導材料的應用開辟了廣闊的前景,米勒和貝德諾爾茨也因此榮獲1987年諾貝爾物理學獎金。
分類 超導材料按其化學成分可分為元素材料、合金材料、化合物材料和超導陶瓷。①超導元素:在常壓下有28種元素具超導電性,其中鈮(Nb)的Tc最高,為9.26K。電工中實際應用的主要是鈮和鉛(Pb,Tc=7.201K),已用于制造超導交流電力電纜、高Q值諧振腔等。② 合金材料: 超導元素加入某些其他元素作合金成分, 可以使超導材料的全部性能提高。如最先應用的鈮鋯合金(Nb-75Zr),其Tc為10.8K,Hc為8.7特。繼后發展了鈮鈦合金,雖然Tc稍低了些,但Hc高得多,在給定磁場能承載更大電流。其性能是Nb-33Ti,Tc=9.3K,Hc=11.0特;Nb-60Ti,Tc=9.3K,Hc=12特(4.2K)。目前鈮鈦合金是用于7~8特磁場下的主要超導磁體材料。鈮鈦合金再加入鉭的三元合金,性能進一步提高,Nb-60Ti-4Ta的性能是,Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的性能是,Tc=9.8K,Hc=12.8特。③超導化合物:超導元素與其他元素化合常有很好的超導性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超導化合物還有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。④超導陶瓷:20世紀80年代初,米勒和貝德諾爾茨開始注意到某些氧化物陶瓷材料可能有超導電性,他們的小組對一些材料進行了試驗,于1986年在鑭-鋇-銅-氧化物中發現了Tc=35K的超導電性。1987年,中國、美國、日本等國科學家在鋇-釔-銅氧化物中發現Tc處于液氮溫區有超導電性,使超導陶瓷成為極有發展前景的超導材料。
應用 超導材料具有的優異特性使它從被發現之日起,就向人類展示了誘人的應用前景。但要實際應用超導材料又受到一系列因素的制約,這首先是它的臨界參量,其次還有材料制作的工藝等問題(例如脆性的超導陶瓷如何制成柔細的線材就有一系列工藝問題)。到80年代,超導材料的應用主要有:①利用材料的超導電性可制作磁體,應用于電機、高能粒子加速器、磁懸浮運輸、受控熱核反應、儲能等;可制作電力電纜,用于大容量輸電(功率可達10000MVA);可制作通信電纜和天線,其性能優于常規材料。②利用材料的完全抗磁性可制作無摩擦陀螺儀和軸承。③利用約瑟夫森效應可制作一系列精密測量儀表以及輻射探測器、微波發生器、邏輯元件等。利用約瑟夫森結作計算機的邏輯和存儲元件,其運算速度比高性能集成電路的快10~20倍,功耗只有四分之一。
1911年,荷蘭物理學家昂尼斯(1853~1926)發現,水銀的電阻率并不象預料的那樣隨溫度降低逐漸減小,而是當溫度降到4.15K附近時,水銀的電阻突然降到零。某些金屬、合金和化合物,在溫度降到絕對零度附近某一特定溫度時,它們的電阻率突然減小到無法測量的現象叫做超導現象,能夠發生超導現象的物質叫做超導體。超導體由正常態轉變為超導態的溫度稱為這種物質的轉變溫度(或臨界溫度)TC,F已發現大多數金屬元素以及數以千計的合金、化合物都在不同條件下顯示出超導性。如鎢的轉變溫度為0.012K,鋅為0.75K,鋁為1.196K,鉛為7.193K。
超導體得天獨厚的特性,使它可能在各種領域得到廣泛的應用。但由于早期的超導體存在于液氦極低溫度條件下,極大地限制了超導材料的應用。人們一直在探索高溫超導體,從1911年到1986年,75年間從水銀的4.2K提高到鈮三鍺的23.22K,才提高了19K。
1986年,高溫超導體的研究取得了重大的突破。掀起了以研究金屬氧化物陶瓷材料為對象,以尋找高臨界溫度超導體為目標的“超導熱”。全世界有260多個實驗小組參加了這場競賽。
1986年1月,美國國際商用機器公司設在瑞士蘇黎世實驗室科學家柏諾茲和繆勒首先發現鋇鑭銅氧化物是高溫超導體,將超導溫度提高到30K;緊接著,日本東京大學工學部又將超導溫度提高到37K;12月30日,美國休斯敦大學宣布,美籍華裔科學家朱經武又將超導溫度提高到40.2K。
政策法規