超導科學研究
超導科學研究
1.非常規超導體磁通動力學和超導機理
主要研究混合態區域的磁通線運動的機理,不可逆線性質、起因及其與磁場和溫度的關系,臨界電流密度與磁場和溫度的依賴關系及各向異性。超導機理研究側重于研究正常態在強磁場下的磁阻、霍爾效應、漲落效應、費米面的性質以及T<Tc時用強磁場破壞超導達到正常態時的輸運性質等。對有望表現出高溫超導電性的體系象有機超導體等以及在強電方面具有廣闊應用前景的低溫超導體等,也將開展其在強磁場下的性質研究。
2.強磁場下的低維凝聚態特性研究
低維性使得低維體系表現出三維體系所沒有的特性。低維不穩定性導致了多種有序相。強磁場是揭示低維凝聚態特性的有效手段。主要研究內容包括:有機鐵磁性的結構和來源;有機(包括富勒烯)超導體的機理和磁性;強磁場下二維電子氣中非線性元激發的特異屬性;低維磁性材料的相變和磁相互作用;有機導體在磁場中的輸運和載流子特性;磁場中的能帶結構和費米面特征等。
3.強磁場下的半導體材料的光、電等特性
強磁場技術對半導體科學的發展愈益變得重要,因為在各種物理因素中,外磁場是唯一在保持晶體結構不變的情況下改變動量空間對稱性的物理因素,因而在半導體能帶結構研究以及元激發及其互作用研究中,磁場有著特別重要的作用。通過對強磁場下半導體材料的光、電等特性開展實驗研究,可進一步理解和把握半導體的光學、電學等物理性質,從而為制造具有各種功能的半導體器件并發展高科技作基礎性探索。
4.強磁場下極微細尺度中的物理問題
極微細尺度體系中出現許多常規材料不具備的新現象和奇異特性,這與這類材料的微結構特別是電子結構密切相關。強磁場為研究極微細尺度體系的電子態和輸運特性提供強有力的手段,不但能進一步揭示這類材料在常規條件下難以出現的奇異現象,而且為在更深層次下認識其物理特性提供豐富的科學信息。主要研究強磁場下極微細尺度金屬、半導體等的電子輸運、電子局域和關聯特性;量子尺寸效應、量子限域效應、小尺寸效應和表面、界面效應;以及極微細尺度氧化物、碳化物和氮化物的光學特性及能隙精細結構等。
5.強磁場化學
強磁場對化學反應電子自旋和核自旋的作用,可導致相應化學鍵的松馳,造成新鍵生成的有利條件,誘發一般條件下無法實現的物理化學變化,獲得原來無法制備的新材料和新化合物。強磁場化學是應用基礎性很強的新領域,有一系列理論課題和廣泛應用前景。近期可開展水和有機溶劑的磁化及機理研究以及強磁場誘發新化學反應研究等。
6.磁場下的生物學、生物-醫學研究等
磁體科學和技術
強磁場的價值在于對物理學知識有重要貢獻。八十年代的一個概念上的重要進展是量子霍爾效應和分數量子霍耳效應的發現。這是在強磁場下研究二維電子氣的輸運現象時發現的(獲85年諾貝爾獎)。量子霍爾效應和分數量子霍爾效應的發現激起物理學家探索其起源的熱情,并在建立電阻的自然基準,精確測定基本物理常數e,h和精細結構常數(=e2/h(0c等應用方面,已顯示巨大意義。高溫超導電性機理的最終揭示在很大程度上也將依賴于人們在強磁場下對高溫超導體性能的探索。
熟悉物理學史的人都清楚,由固體物理學演化為凝聚態物理學,其重要標志就在于其研究對象的日益擴大,從周期結構延伸到非周期結構,從三維晶體拓寬到低維和高維,乃至分數維體系。這些新對象展示了大量新的特性和物理現象,物理機理與傳統的也大不相同。這些新對象的產生以及對新效應、新現象的解釋使得凝聚態物理學得以不斷的豐富和發展。在此過程中,極端條件一直起著至關重要的作用,因為極端條件往往使得某些因素突出出來而同時抑制其它因素,從而使原本很復雜的過程變得較為簡單,有利于直接了解物理本質。
相對于其它極端條件,強磁場有其自身的特色。強磁場的作用是改變一個系統的物理狀態,即改變角動量(自旋)和帶電粒子的軌道運動,因此,也就改變了物理系統的狀態。正是在這點上,強磁場不同于物理學的其他一些比較昂貴的手段,如中子源和同步加速器,它們沒有改變所研究系統的物理狀態。磁場可以產生新的物理環境,并導致新的特性,而這種新的物理環境和新的物理特性在沒有磁場時是不存在的。低溫也能導致新的物理狀態,如超導電性和相變,但強磁場極不同于低溫,它比低溫更有效,這是因為磁場使帶電的和磁性粒子的遠動和能量量子化,并破壞時間反演對稱性,使它們具有更獨特的性質。
強磁場可以在保持晶體結構不變的情況下改變動量空間的對稱性,這對固體的能帶結構以及元激發及其互作用等研究是非常重要的。固體復雜的費米面結構正是利用強磁場使得電子和空穴在特定方向上的自由運動從而導致磁化和磁阻的振蕩這一原理而得以證實的。固體中的費米面結構及特征研究一直是凝聚態物理學領域中的前沿課題。當今凝聚態物理基礎研究的許多重大熱點都離不開強磁場這一極端條件,甚至很多是以強磁場下的研究作為基礎。如波色凝聚只發生在動量空間,要在實空間中觀察到此現象必需在非均勻的強磁場中才得以可能。又如高溫超導的機理問題、量子霍爾效應研究、納米材料和介觀物體中的物理問題、巨磁阻效應的物理起因、有機鐵磁性的結構和來源、有機(包括富勒烯〕超導體的機理和磁性、低維磁性材料的相變和磁相互作用、固體中的能帶結構和費米面特征以及元激發及其互作用研究等等,強磁場下的研究工作將有助于對這些問題的正確認識和揭示,從而促進凝聚態物理學的進一步發展和完善。
帶電粒子象電子、離子等以及某些極性分子的運動在磁場特別是在強磁場中會產生根本性變化。因此,研究強磁場對化學反應過程、表面催化過程、材料特別是磁性材料的生成過程、生物效應以及液晶的生成過程等的影響,有可能取得新的發現,產生交叉學科的新課題。強磁場應用于材料科學為新的功能材料的開發另辟新徑,這方面的, , 工作在國外備受重視,在國內也開始有所要求。高溫超導體也正是因為在未來的強電領域中蘊藏著不可估量的應用前景才引起科技界乃至各國政府的高度重視。因此,強磁場下的物理、化學等研究,無論是從基礎研究的角度還是從應用角度考慮都具有非常重要的科學和技術上的意義,通過這一研究,不僅有助于將當代的基礎性研究向更深層次開拓,而且還會對國民經濟的發展起著重要的推動作用。
政策法規